THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Tutorial Classwork 7

- 1. Let (X, \mathfrak{T}) be a topological space. Let $\{F_i\}_{i \in I}$ be a collection of closed subsets and $U \in \mathfrak{T}$ such that $\bigcap_{i \in I} F_i \subset U$.
 - (a) Assume that X is compact. Show that there exists $i_1, i_2, \ldots, i_n \in I$ such that $\bigcap_{k=1}^n F_{i_k} \subset U$;
 - (b) Assume that F_{i_0} is compact for some $i_0 \in I$. Show that there exists $i_1, i_2, \ldots, i_n \in I$ such that $\bigcap_{k=1}^n F_{i_k} \subset U$.
- 2. Let (X, \mathfrak{T}) be a compact space.
 - (a) Consider a sequence of non-empty closed subsets $\{F_n\}_{n\in\mathbb{N}}$ with $F_{n+1} \subset F_n$ for $n \ge 1$. Show that we have $\bigcap_{n\in\mathbb{N}}F_n \neq \emptyset$.
 - (b) * Further assume that X is Hausdorff. Show that for any continuous function $f: X \to X$, there exists a non-empty closed subset $F \subset X$ such that f(F) = F. (Hint: consider the sequence $F_1 = X, F_{n+1} = f(F_n)$ for $n \ge 1$.)